PresseBox
Pressemitteilung BoxID: 810552 (Forschungsverbund Berlin e.V.)
  • Forschungsverbund Berlin e.V.
  • Rudower Chaussee 17
  • 12489 Berlin
  • http://ww.fv-berlin.de
  • Ansprechpartner
  • Karl-Heinz Karisch
  • +49 (30) 6392-3337

Ein neuer Twist in der Femtochemie durch Attosekundenforschung

(PresseBox) (Berlin, ) Die Attosekundenforschung ist ein spannendes neues Forschungsgebiet der modernen Physik, mit dem Ziel, die Bewegung von Elektronen in Atomen, Molekülen und Festkörpern zeitaufgelöst zu vermessen. Elektronendynamik entsteht durch kohärente Anregung verschiedener elektronischer Zustände und kann mit Zeitskalen im Bereich von Attosekunden extrem schnell sein. Chemie hingegen ist das Aufbrechen und die Neuformation von elektronischen Bindungen, bedingt durch die räumliche Umlagerung von atomaren oder molekularen Reaktionspartnern. Solche chemische Dynamik spielt sich auf der langsameren Femtosekundenzeitbasis ab und wird schon länger zeitaufgelöst untersucht, seit den Pionierleistungen des kürzlich verstorbenen Nobelpreisträgers Ahmet Zewail.

Nichtsdestotrotz gibt es spannende Wege, auf denen die zeitaufgelöste Erforschung chemischer Reaktionen stark von den technologischen Entwicklungen in der Attosekundenphysik profitieren kann. Ein solcher Weg wurde in der kürzlich veröffentlichten Arbeit von Drescher et al. beschritten. Attosekundenpulse werden durch Hohe Harmonische Erzeugung generiert, durch die Photonen aus dem infraroten Spektralbereich in einer stark nicht-linearen Wechselwirkung mit Materie in den Frequenzbereich des extremen Ultravioletts (XUV) konvertiert werden. Die kurze zeitliche Dauer solcher Attosekundenpulse bedingt ein breites, kontinuierliches Frequenzspektrum, ideal geeignet für Absorptionsexperimente. Die erreichten Photonenenergien decken den Energiebereich bis zu hunderten von Elektronenvolt ab, mit denen Elektronen in den kernnahen Schalen von Atomen angeregt werden können.

Übergänge von gebundenen Elektronen aus kernnahen Schalen in die Valenzschale bieten einzigartige Einblicke in die Struktur und Dynamik von Molekülen. Aufgrund der starken Lokalisierung der Kernschalen sind diese Übergänge elementspezifisch. Gleichzeitig ist in ihnen aber auch die intramolekulare Umgebung des jeweiligen Atoms kodiert, da das Elektron in eine Vakanz in der Valenzschale gehoben wird, die von den chemischen Bindungen des Atoms im Molekül abhängt (siehe Abb. 1). Wichtig ist nun, dass solche Kern-Valenzschalenübergänge nur sehr kurze Lebensdauern im Bereich weniger Femtosekunden haben. Die Anwendung ultrakurzer XUV-Pulse bietet daher neue Ansätze für zeitaufgelöste chemische Studien: Chemische Dynamik, etwa mit einem ultravioletten (UV) Laserpuls angestoßen, kann aus der Perspektive verschiedener Atome innerhalb eines Moleküls in einem transienten XUV-Absorptionsexperiment untersucht werden. Diese neue Art von chemischen Studien werden im Moment von einigen wenigen Arbeitsgruppen auf der Welt erprobt.

In dem von Drescher et al. am MBI ausgeführten Experiment wurde die Photodissoziation von Iodmethan (CH3I) und Iodbenzol (C6H5I) mittels transienter XUV-Absorptionsspektroskopie untersucht (siehe Abb. 2). Diese beiden Moleküle unterscheiden sich durch den Bindungspartner des Iodatoms; in einem Falle ist dies eine Methylgruppe (CH3), im anderen Falle eine Phenylgruppe mit dem charakteristischen Kohlenstoffring (C6H5). Absorption eines UV-Femtosekundenpulses führt zum Brechen der Bindung zwischen dem Iod- und dem benachbarten Kohlenstoffatom und damit zur Erzeugung von atomarem Iod. Untersucht wurde dies durch Absorption an der N4,5-Kante des Iodatoms. In beiden Molekülen verschwinden die molekularen Kern-Valenzschalenübergänge bei UV-Absorption innerhalb der experimentellen Zeitauflösung. Die zum atomaren Iod hin konvergierenden Übergänge erscheinen unverzüglich im Falle von CH3I, jedoch zeitverzögert im Falle von C6H5I. Im Falle von CH3I wurde diese Beobachtung als die UV-Erzeugung einer Vakanz in der Valenzschale interpretiert, die in der Nähe des Iodatoms lokalisiert ist. Damit ergibt sich eine hohe Wahrscheinlichkeit für einen XUV-Übergang aus dem Kernzustand des Iodatoms. Das Experiment zeigt, wie die Valenzschale während der Dissoziation des Moleküls relaxiert. Dabei wird eine kontinuierliche Verschiebung der Übergangsenergie der zum atomaren Iod hin konvergierenden Übergänge gemessen. In Falle von C6H3I hingegen weist das zeitverzögerte Erscheinen der Absorptionsübergänge auf eine UV-erzeugte Vakanz hin, die ursprünglich innerhalb des Moleküls räumlich entfernt vom Iod-Reporteratom lokalisiert ist. Damit ist die Wahrscheinlichkeit für einen Kern-Valenzschalenübergang gering. Die Vakanz muss zuerst durch das Molekül wandern, bevor sie beobachtet werden kann. Dieses Verhalten ist der dominanten π → σ* UV-Anregung in Iodbenzol zuzuschreiben, eine Folge des charakteristischen delokalisierten Elektronensystems im Kohlenstoffring.

Während in der gerade veröffentlichten Arbeit die experimentellen Daten mittels eines einfachen Models erklärt wurden, ermöglicht das MBI mit seiner neu gegründeten Abteilung für Theorie einzigartige Möglichkeiten für gemeinsame experimentelle und theoretische Untersuchungen von transienter XUV-Absorptionsspektroskopie photochemischer Prozesse. Dabei wird auch eine neue theoretische Herangehensweise zum Einsatz kommen, die jüngst von Forscher und Forscherinnen des MBI in Kollaboration mit Kollegen und Kolleginnen in Kanada, dem Vereinten Königreich und der Schweiz entwickelt wurde.

Originalpublikation: Journal of Chemical Physics Communication, 145, 011101 (2016)
XUV transient absorption spectroscopy of iodomethane and iodobenzene photodissociation
L. Drescher, M.C.E. Galbraith, G. Reitsma, J. Dura, N. Zhavoronov, S. Patchkovskii, M.J.J. Vrakking, and J. Mikosch
http://dx.doi.org/10.1063/1.4955212

Für die oben stehenden Pressemitteilungen, das angezeigte Event bzw. das Stellenangebot sowie für das angezeigte Bild- und Tonmaterial ist allein der jeweils angegebene Herausgeber (siehe Firmeninfo bei Klick auf Bild/Meldungstitel oder Firmeninfo rechte Spalte) verantwortlich. Dieser ist in der Regel auch Urheber der Pressetexte sowie der angehängten Bild-, Ton- und Informationsmaterialien.
Die Nutzung von hier veröffentlichten Informationen zur Eigeninformation und redaktionellen Weiterverarbeitung ist in der Regel kostenfrei. Bitte klären Sie vor einer Weiterverwendung urheberrechtliche Fragen mit dem angegebenen Herausgeber. Bei Veröffentlichung senden Sie bitte ein Belegexemplar an service@pressebox.de.