Neuer Schritt auf dem Weg zum Quanten-Computer

Ultrastarke Wechselwirkung zwischen Licht und Materie realisiert

(PresseBox) (München, ) Weltweit arbeiten Forscher an der Entwicklung des Quanten-Computers, der den bisherigen Computern haushoch überlegen wäre. Die starke Kopplung von Quanten-Bits mit Lichtquanten ist dabei ein Schlüsselprozess. Ein Team um Professor Rudolf Gross, Physiker an der Technischen Universität München (TUM), hat nun eine extrem starke Wechselwirkung zwischen Licht und Materie erzielt, die ein erster Schritt in diese Richtung sein könnte. Ihre Ergebnisse stellen sie in der aktuellen Online-Ausgabe des Magazins Nature Physics vor.

Die Wechselwirkung zwischen Licht und Materie ist einer der fundamentalsten Prozesse der Physik. Ob sich unser Auto im Sommer aufgrund der Absorption von Lichtquanten in einen Backofen verwandelt, ob Solarzellen aus Licht Strom gewinnen oder Leuchtdioden Strom in Licht umwandeln, überall in unserem täglichen Leben begegnen wir Auswirkungen dieser Prozesse. Auch für die Entwicklung der so genannten Quanten-Computer ist das Verständnis der Wechselwirkungen zwischen einzelnen Lichtteilchen, Photonen, und Atomen entscheidend.

Physiker der Technischen Universität München (TUM), des Walther-Meißner-Instituts für Tieftemperaturforschung der Bayerischen Akademie der Wissenschaften (WMI) und der Universität Augsburg haben nun zusammen mit Partnern aus Spanien eine ultrastarke Wechselwirkung von Mikrowellen-Photonen mit den Atomen eines nanostrukturierten Schaltkreises realisiert. Die erreichte Wechselwirkung ist zehnmal stärker als die bisher für solche Systeme erzielten Werte.

Das einfachste System zur Untersuchung der Wechselwirkung zwischen Licht und Materie besteht aus einem so genannten Hohlraum-Resonator, in dem genau ein Lichtteilchen, ein Photon, und ein Atom eingesperrt sind (Cavity quantum electrodynamics, cavity QED). Die Experimente sind hierbei extrem aufwändig, da die Wechselwirkung sehr schwach ist. Eine sehr viel stärkere Wechselwirkung lässt sich mit nanostrukturierten Schaltkreisen erzielen, in denen bei Temperaturen knapp über dem absoluten Nullpunkt Metalle wie Aluminium supraleitend werden (circuit QED). Richtig aufgebaut verhalten sich die vielen Milliarden Atome der nur wenige Nanometer dicken Leiterbahnen des Schaltkreises so wie ein einziges künstliches Atom und gehorchen den Gesetzen der Quantenmechanik. Im einfachsten Fall erhält man so ein System mit zwei Energiezuständen, ein so genanntes Quanten-Bit oder Qbit.

Die Kopplung solcher Systeme mit Mikrowellen-Resonatoren hat sich zu einem rasch wachsenden neuen Forschungsgebiet entwickelt, auf dem die TUM-Physik, das WMI und der Exzellenzcluster Nanosystems Initiative Munich (NIM) eine weltweit führende Stellung einnehmen. Anders als bei cavity QED-Systemen können die Wissenschaftler die nano-Schaltkreise in weiten Bereichen gezielt maßschneidern.

Für seine Messungen fing das Team um Professor Gross das Photon in einer speziellen Box ein, einem Resonator. Dieser besteht aus einer supraleitenden Niob-Leiterbahn, die an beiden Enden mit für Mikrowellen sehr gut reflektierenden "Spiegeln" ausgestattet ist. In diesem Resonator wird das künstliche, aus einem Aluminium-Schaltkreis bestehende Atom so platziert, dass es mit dem Photon optimal wechselwirken kann. Die ultrastarken Wechselwirkungen erzielten die Forscher, indem sie ein weiteres supraleitendes Bauteil in ihren Schaltkreis einfügten, einen so genannten Josephson-Kontakt.

Die gemessene Wechselwirkungsstärke erreichte bis zu zwölf Prozent der Resonatorfrequenz. Sie ist damit zehnmal stärker als bisher in circuit QED Systemen gemessene Wechselwirkungen und viele tausendmal stärker als die in echten Hohlraum-Resonatoren messbaren Effekte. Doch mit dem Erfolg schufen die Wissenschaftler auch ein neues Problem: Bisher beschrieb die schon 1963 entwickelte Jaynes-Cummings-Theorie alle beobachteten Effekte gut. Im Gebiet der ultrastarken Wechselwirkungen scheint sie jedoch nicht mehr zu gelten. "Die Spektren sehen so aus, als hätten wir es hier mit einem völlig neuen Objekt zu tun", sagt Professor Gross. "Die Kopplung ist so stark, dass das Atom-Photon-Paar als eine neue Einheit betrachtet werden muss, eine Art Molekül aus einem Atom und einem Photon."

Dies genauer zu untersuchen, wird Experimentalphysiker und Theoretiker noch eine Weile beschäftigen. Experimentell in diesen Bereich vorstoßen zu können, eröffnet den Wissenschaftlern aber jetzt schon eine Vielzahl neuer experimenteller Möglichkeiten. Die gezielte Manipulation solcher Paare aus Atom und Photon könnte der Schlüssel zur Quantenbasierten Informationsverarbeitung sein, den so genannten Quanten-Computern, die den heutigen Computern haushoch überlegen wären.

Die Arbeiten wurden finanziell unterstützt aus Mitteln der Exzellenzinitiative (Exzellenzcluster Nanosystems Initiative Munich), Mitteln des SFB 631 der Deutschen Forschungsgemeinschaft (DFG), aus Mitteln der Europäischen Gemeinschaft (EuroSQIP, SOLID) sowie aus Mitteln des spanischen Ministeriums für Wissenschaft und Innovation.

Die Bayerische Akademie der Wissenschaften (BAdW), gegründet 1759, ist eine der größten und ältesten Akademien in Deutschland. Sie ist zugleich Gelehrtengesellschaft und Forschungseinrichtung von internationalem Rang. In 40 Kommissionen und zwei Arbeitsgruppen mit rund 330 Mitarbeitern betreibt sie Grundlagenforschung in den Geistes- und Naturwissenschaften. Der Schwerpunkt liegt auf langfristigen Vorhaben, die die Basis für weiterführende Forschungen liefern und die kulturelle Überlieferung sichern, darunter kritische Editionen, wissenschaftliche Wörterbücher sowie exakt erhobene Messreihen. Sie ist ferner Trägerin des Leibniz-Rechenzentrums, eines der größten Supercomputing-Zentren Deutschlands, und des Walther-Meißner-Instituts für Tieftemperaturforschung.

Technische Universität München

Die Technische Universität München (TUM) ist mit rund 420 Professorinnen und Professoren, 7.500 Mitarbeiterinnen und Mitarbeitern (einschließlich Klinikum rechts der Isar) und 24.000 Studierenden eine der führenden Universitäten Europas. Ihre Schwerpunktfelder sind die Ingenieurwissenschaften, Naturwissenschaften, Lebenswissenschaften, Medizin und Wirtschaftswissenschaften. Nach zahlreichen Auszeichnungen wurde sie 2006 vom Wissenschaftsrat und der Deutschen Forschungsgemeinschaft zur Exzellenzuniversität gewählt. Das weltweite Netzwerk der TUM umfasst auch eine Dependance in Singapur. Die TUM ist dem Leitbild einer unternehmerischen Universität verpflichtet.

Diese Pressemitteilungen könnten Sie auch interessieren

News abonnieren

Mit dem Aboservice der PresseBox, erhalten Sie tagesaktuell und zu einer gewünschten Zeit, relevante Presseinformationen aus Themengebieten, die für Sie interessant sind. Für die Zusendung der gewünschten Pressemeldungen, geben Sie bitte Ihre E-Mail-Adresse ein.

Es ist ein Fehler aufgetreten!

Vielen Dank! Sie erhalten in Kürze eine Bestätigungsemail.


Ich möchte die kostenlose Pressemail abonnieren und habe die Bedingungen hierzu gelesen und akzeptiert.